Driving research of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME / CFS),
Post Treatment Lyme Disease Syndrome (PTLDS), Fibromyalgia and Long Covid

San Francisco Chronicle: Stanford discovery validates chronic fatigue syndrome, could improve diagnosis

By Erin Allday

A Stanford scientist has developed what could be the first simple blood test for chronic fatigue syndrome, a puzzling and often disabling illness that can take years to diagnose and is still largely misunderstood by mainstream medicine.

The diagnostic test is built on Stanford biochemist Ron Davis’ discovery of a biological marker that distinguishes people with chronic fatigue syndrome from those who are healthy. A description of the biomarker and how it might be used was published Monday in the Proceedings of the National Academy of Sciences.

Assuming his results hold up under further study, the biomarker would be a critical breakthrough in research into the disease. It could make diagnosis of chronic fatigue syndrome much easier and help scientists develop treatments for the illness. And perhaps just as important, the biomarker provides further validation to a disease that has long been brushed aside or even labeled as imaginary.

“There are physicians around who say if there is no biomarker the disease doesn’t exist, as far as they’re concerned,” Davis said. “So there’s been a real effort to find a biomarker. I’m hoping this will help the medical community accept that this is a real disease.”

Davis’ initial study was small, involving only 40 people, and he will need to reproduce his results in much larger trials before he can make the blood test widely available. But patients and scientists in the field said they were enthusiastic about the work so far.

“It’s a major milestone. If it holds up in larger numbers, this could be a transformative advance,” said Robert Naviaux, a genetics professor at UC San Diego who is familiar with the Stanford work but was not involved in the biomarker research.

Chronic fatigue syndrome is thought to affect several million people in the United States, though some reports suggest as many as 90 percent of people who have it have not been diagnosed. The illness can cause severe fatigue, to the point that many people go years without being able to leave their beds and even more are unable to work or have normal social lives.

In addition to the fatigue, symptoms can include chronic pain, problems with memory and concentration, gastrointestinal issues and extreme sensitivity to light, sound and smell. Multiple organ systems can be affected at once. One of the most common effects is known as post-exertional malaise, in which people suffer a severe worsening of symptoms after physical activity.

The disease is formally called myalgic encephalomyelitis/chronic fatigue syndrome (ME / CFS); the former half is a reference to muscle pain associated with inflammation of the nervous system. Though chronic fatigue syndrome is the name most commonly associated with the illness, many patients, doctors and scientists avoid it because they say it makes light of the debilitating nature of the symptoms.

There are no drug treatments for chronic fatigue syndrome. Indeed, Davis hopes that his diagnostic test could help scientists screen for drugs that may alleviate symptoms or cure the disease outright. It would also make it easier for doctors to identify participants for clinical trials, which could speed up research into the cause of the disease and the best ways to treat it.

But the greatest advantage of a diagnostic tool would be for patients, many of whom endure years of frustration and misdiagnosis before finding out what’s wrong with them. Davis’ findings would allow doctors and other providers to diagnose patients within hours based on a blood test, instead of sifting through a subjective array of symptoms.

Jaime Seltzer, who works with the patient advocacy group ME Action, was diagnosed with the syndrome relatively quickly about five years ago because she knew others who had the disease and she recognized the symptoms. But she said many people not only wait years for a diagnosis, but are told in the meantime that their symptoms are in their heads, or that they can improve with exercise.

“And that’s literally the worst advice you can give someone with ME,” Seltzer said, given that post-exertional malaise is such a common symptom of the disease.

“It’s absolutely mind-blowing,” she said. “But a biomarker can and will change that.”

Chronic fatigue syndrome currently is diagnosed through a checklist of symptoms. It’s not a difficult diagnosis, said Maureen Hanson, a professor of molecular biology and genetics at Cornell University who helped develop the list. But many primary care doctors aren’t familiar with the symptoms or still aren’t convinced that the syndrome is real.

“Most people with this disease see four or five physicians before they’re diagnosed,” Hanson said. “If there was a simple blood test to find out, to give an objective piece of data rather than a list of symptoms, that would be helpful to get an accurate diagnosis.”

The biomarker that Davis found is based on how immune cells respond to stress. In his studies, Davis collected blood from participants, then filtered the blood to a sample that contained only immune cells and plasma. He exposed the sample to salt, which is a stress to cells, requiring them to exert energy to retain an appropriate sodium balance.

The stressed sample was then passed through a microchip about the size of a postage stamp, which used electric current to indirectly measure energy exertion. Less exertion meant the cells were having little trouble maintaining the sodium balance, and more exertion meant they were struggling.

Davis found that the test correctly associated high energy expenditure with the 20 participants who were already known to have chronic fatigue syndrome. Blood samples taken from 20 healthy people had notably lower energy exertion.

His research, which cost roughly $200,000, was funded almost entirely by a patient advocacy foundation. And Davis himself is a deeply invested patient advocate — his son has had chronic fatigue syndrome for nearly a decade, and has been bed-bound for almost all that time.

“He’s 35. He’s already lost a good part of his life,” Davis said. “The good news is he’s not getting worse. But I worry about him going downhill and that I won’t figure this out before he dies.”

As excited as he is to have found a biological marker of the disease, “we still need to know exactly what’s causing it,” Davis said. “Then you can know how to treat it. You can cure it.”

Read the original post on SF Chronicle here.

Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME / CFS) Post Treatment Lyme Disease Syndrome (PTLDS), Fibromyalgia Leading Research. Delivering Hope.Open Medicine Foundation®

What are the advantages of giving from your Donor Advised Fund (DAF)?

  • Your gifts to your donor advised fund entitle you to an immediate income tax deduction at the time of contribution.
  • You avoid capital gains tax on appreciated assets you place in your donor advised fund.
  • Your fund’s investment gains accumulate tax free.
  • Funds are distributed to Open Medicine Foundation in your name and immediately put to use to support our worldwide research efforts.

How do I make a donation through my DAF?

Just click on the DAF widget below. It is simple and convenient to find your fund among the over 900 funds in our system.

Still can’t find your fund? 

  • Request a grant distribution through your Donor Advised Fund sponsor
  • Be sure to use OMF’s EIN #26-4712664
  • You can also designate OMF as a beneficiary for your Donor Advised Fund
  • Questions? Give us a call at 650-242-8669 
 

Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME / CFS) Post Treatment Lyme Disease Syndrome (PTLDS), Fibromyalgia Leading Research. Delivering Hope.Open Medicine Foundation®

Averting a second pandemic:

Open Medicine Foundation leads groundbreaking international study of

Long COVID’s conversion to ME/CFS

AGOURA HILLS, CALIF.  — Open Medicine Foundation (OMF) is leading a large-scale international collaborative study investigating the potential conversion of Post-Acute Sequelae SARS-CoV-2 infection — more commonly known as Long COVID or Post-COVID Syndrome —  to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic, life-altering disease with no known cause, diagnostic test or FDA approved treatments available.

Up to 2.5 million people in the U.S. alone suffer from ME/CFS; the COVID-19 pandemic could at least double that number. An estimated 35 percent of Americans who had COVID-19 have failed to fully recover several months after infection, prompting many to call it “a potential second pandemic.”

OMF recognized a familiar health crisis emerging, one with eerie similarities to ME/CFS. This crisis presented a unique opportunity to understand how a viral infection — in this case COVID-19 — may develop into ME/CFS in some patients. The goal is to find targeted treatments for ME/CFS patients and ultimately prevent its onset in people infected with SARS-CoV-2 or other infections.

The federal government is only now investing in Post-COVID research, with no focus on its connection to ME/CFS. OMF has already engaged researchers for the largest-scale study of its kind, solely supported by private donors who have contributed over one million dollars to date. When fully funded, the five million dollar, three-year study will be conducted across the globe at OMF funded Collaborative Research Centers, led by some of the world’s top researchers and ME/CFS experts.

BACKGROUND

In a significant percentage of patients, infections preceded their development of ME/CFS.  For example, according to the CDC about one in ten infected with Epstein-Barr virus, Ross River virus, or Coxiella burnetti develop symptoms that meet the criteria for ME/CFS.

THE STUDY

The ability to follow the development of ME/CFS from a known viral infection is unprecedented to date and crucial to researchers’ understanding of the disease. The focus of this study is to find the biological differences between persons returning to good health after COVID-19 and persons who remained ill more than six months after infection and developed ME/CFS.  Understanding these alterations in key pathways can lead to groundbreaking discoveries including new biomarkers, drug targets, and prevention and treatment strategies.

###

About Open Medicine Foundation

Established in 2012, Open Medicine Foundation leads the largest, concerted worldwide nonprofit effort to diagnose, treat, and prevent ME/CFS and related chronic, complex diseases such as Post Treatment Lyme Disease Syndrome, Fibromyalgia, and Post COVID. OMF adds urgency to the search for answers by driving transformational philanthropy into global research. We have raised over $28 Million from private donors and facilitated and funded the establishment of six prestigious ME/CFS Collaborative Research Centers around the world. To learn more, visit www.omf.ngo.

CONTACT:

Heather Ah San

Development and Communications Manager

1-650-242-8669

heather@omf.ngo