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Exercise Pathophysiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Post-

Acute Sequelae of SARS-CoV-2: More in Common Than Not? 

 

Abbreviations List 

COVID-19: coronavirus disease 2019 

CPET: cardiopulmonary exercise test 

eSBV: estimated stressed blood volume 

iCPET: invasive cardiopulmonary exercise test 

ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome 

MAP: mean arterial pressure 

mPAP: mean pulmonary artery pressure 

niCPET: noninvasive cardiopulmonary exercise test 

PASC: post-Acute Sequelae of SARS-CoV-2 

PAWP: pulmonary artery wedge pressure 

POTS: postural orthostatic tachycardia syndrome 

RAP: right atrial pressure 

Qc: cardiac output 

VO2: oxygen uptake 

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2 
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ABSTRACT 

Topic Importance: Post-Acute Sequelae of SARS-CoV-2 (PASC) is a long-term consequence of 

acute infection from coronavirus disease 2019 (COVID-19). Clinical overlap between PASC and 

myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has been observed, with shared 

symptoms including intractable fatigue, postexertional malaise, and orthostatic intolerance. 

The mechanistic underpinnings of such symptoms are poorly understood. 

 

Review Findings: Early studies suggest deconditioning as the primary explanation for exertional 

intolerance in PASC. Cardiopulmonary exercise testing (CPET) reveals perturbations related to 

systemic blood flow and ventilatory control associated with acute exercise intolerance in PASC, 

which are not typical of simple detraining. Hemodynamic and gas exchange derangements in 

PASC have substantial overlap with those observed with ME/CFS, suggestive of shared 

mechanisms.  

 

Summary: This review aims to illustrate exercise pathophysiologic commonalities between 

PASC and ME/CFS that will help guide future diagnostics and treatment.  
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INTRODUCTION 

Since the onset of the coronavirus disease 2019 (COVID-19) global pandemic, more than 550 

million cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

have been recorded. A substantial subset of survivors experiences long-term complications 

following initial infection, labeled with the all-encompassing term of Post-Acute Sequelae of 

SARS-CoV-2 (PASC) or colloquially referred to as “long-COVID.” Diagnostic criteria for PASC are 

not clearly defined and prevalence estimates range from 20 – 50% of survivors. Afflicted 

patients are often young and have a history of mild acute disease. Given the new and 

substantial global burden related to PASC, elucidating mechanisms underlying PASC that inform 

its diagnosis and treatment is critical.1 

 

PASC is recognized as a multi-system syndrome with a broad range of symptoms, including 

fatigue, chest pain, exertional dyspnea, post-exertional malaise (PEM), headache, cognitive 

impairment or “brain fog,” myalgias, and depression.1 While the etiology of PASC is unknown, 

proposed mechanisms include, but are not limited to, autoimmune and hyperinflammatory 

states after acute infection.2 Extensive overlap between PASC and myalgic 

encephalomyelitis/chronic fatigue syndrome (ME/CFS) has been increasingly recognized.3 The 
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National Academy of Medicine requires three major criteria for diagnosis of ME/CFS: 

substantial impairment from fatigue for > 6 months, PEM, and unrefreshing sleep, plus either 

cognitive impairment or orthostatic intolerance.4 Given the substantial overlap in symptoms, a 

common underlying pathophysiology has been suggested.  

 

Noninvasive cardiopulmonary exercise testing (niCPET), with continuous measurement of 

pulmonary gas exchange, ventilation, and cardiac monitoring during incremental exercise on a 

cycle ergometer, offers a diagnostic modality capable of quantifying and explaining the 

exertional intolerance of PASC and ME/CFS. Up to one-third of patients undergoing CPET after 

recovery from their acute illness from COVID-19 demonstrates a reduction in oxygen uptake 

(VO2).5,6  

 

Invasive cardiopulmonary exercise test (iCPET) data suggest similar exercise pathophysiology 

underlies both PASC and ME/CFS and argue against deconditioning as the sole explanation for 

exertional intolerance.7,8 Such studies suggest systemic vascular abnormalities including 

decreased venous return and peripheral left-to-right shunting underlie acute exercise 

intolerance. Combining iCPET with skin biopsy demonstrating decreased small neurite density 

further suggests dysautonomia underlies vascular dysregulation.7 While noninvasive CPET can 

reveal abnormalities related to aerobic capacity, stroke volume, and ventilatory efficiency,9 

invasive CPET elucidates mechanistic underpinnings using direct measurements of pulmonary 

gas exchange, hemodynamics, oxygen delivery and utilization. 
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The current review aims to illustrate the following: (1) noninvasive CPET assessment of PASC 

and ME/CFS; (2) invasive CPET assessment of PASC and ME/CFS; (3) commonalities underlying 

both syndromes including peripheral vascular dysregulation, hyperventilation, and 

mitochondrial dysfunction; (4) pediatric considerations; (5) and future directions. 

 

LITERATURE SEARCH 

Relevant literature was identified via PubMed and were reviewed by the authors for inclusion. 

The search strategy included the following terms: “myalgic encephalomyelitis/chronic fatigue 

syndrome,” “post-acute sequelae of SARS-CoV-2,” “PASC,” “cardiopulmonary exercise test,” 

“dyspnea,” “post-exertional malaise,” “small fiber neuropathy,” and “mitochondrial 

dysfunction.” Abstracts were reviewed for relevance. Whenever possible, case series were 

avoided and larger, prospective trials and metanalyses were preferentially used. 
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INITIAL EVALUATION 

Diagnostics performed on the patient at rest, including pulmonary function tests, chest imaging, 

electrocardiogram, orthostatic testing, and echocardiogram, are frequently nondiagnostic in 

both ME/CFS and PASC. Dyspnea on exertion after COVID-19 has a wide differential diagnosis, 

such as resolving or persistent interstitial lung abnormalities, pulmonary hypertension, chronic 

thromboembolic disease/pulmonary hypertension, tracheal stenosis from prior intubation, 

heart failure, neuromuscular weakness, post-ICU syndrome, and deconditioning.10 Acute 

cardiovascular complications related to PASC include myocarditis and pericarditis, with cardiac 

MRI showing persistent myocardial inflammation months after acute illness.11 The focus of this 

review, however, is on patients with ME/CFS and PASC who do not have intrinsic 

cardiopulmonary abnormalities and present with unexplained exertional intolerance. 
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NONINVASIVE CPET  

Noninvasive CPET is a valuable tool assessing exercise-related symptoms in ME/CFS and PASC. 

ME/CFS patients experience an elevated perception of effort and have a reduced peak VO2 

compared to controls.12 Mildly reduced peak VO2 has been described in ME/CFS with early 

anaerobic thresholds (AT) compared to controls. Overall, peak VO2 in ME/CFS is believed to be 

5.2 to 6.5 mL/kg/min lower compared to controls.13 Related niCPET findings include inefficient 

breathing and hyperventilation.8 Inefficient ventilation is characterized by an increased value of 

VE/VCO2 which physiologically is related to either hyperventilation or failure to normally 

decrease physiologic dead space to tidal volume fraction (VD/VT) during exercise.  

 

Another niCPET variable found in ME/CFS and PASC is chronotropic incompetence. This is of 

interest given emerging evidence suggesting autonomic dysfunction in ME/CFS patients.14 

However, chronotropic incompetence has not been reproduced in more recent and larger 

studies.13 

 

Serial niCPET in ME/CFS 24 hours apart test the ability of patients to recover and replicate 

physiological performance over time.15 The rationale for such an approach relies on the fact 
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that patients with ME/CFS experience exercise intolerance along with prolonged recovery from 

exercise and post-exertional aggravation of symptoms, also known as PEM.4 Two-day niCPET 

protocols have found ME/CFS patients have significantly lower peak VO2, earlier onset of the 

anaerobic threshold (AT), and lower work rate parameters on day 2 compared to day 1.15,16 A 

recent meta-analysis identified that: (1) ME/CFS patients have lower exercise tolerance levels of 

all parameters on the second CPET compared controls; (2) the difference between patients and 

controls are more pronounced at the AT in relation to peak; and (3) the workload at the AT was 

different in ME/CFS patients compared to controls.17 

  

The biological mechanisms that underlie PEM are not well-understood, though CPET has proven 

useful towards mechanistic exploration. Both maximal and submaximal exercise protocols have 

been employed to determine behavioral and physiological consequences of acute exercise 

challenge. These studies have demonstrated symptom exacerbation of variable intensity, type, 

and duration,18 impaired pain regulation,19 altered immune function markers (e.g. cytokines, 

complement levels, natural killer cells),20 changes in gut microbiome interactions,21 disruption 

of metabolites,22 and altered brain function.23 Abnormalities in the skeletal muscle exist in 

ME/CFS patients related to impaired oxygen delivery during exercise and the inability to 

recover from exercise-induced pH reductions.24 

 

It is clear from these studies that exercise influences multiple physiological systems. However, 

few studies have directly tested the associations between the physiological and behavioral 

manifestations of PEM. One recent study reported that neither symptoms nor cardiopulmonary 
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responses to acute exercise were predictive of PEM in Veterans with Gulf War illness – a 

disease that overlaps significantly with ME/CFS.25 Furthermore, given the overlap between 

ME/CFS and PASC along with the observation of PEM in PASC,26 further research into 

underlying mechanisms is needed. 

 

INVASIVE CARDIOPULMONARY EXERCISE TEST 

Protocols for iCPET, hemodynamic measurements, and pulmonary gas exchange measurements 

have been described previously (Figure 1).27 Briefly, the pulmonary and radial arteries are 

catheterized with ultrasound and fluoroscopic guidance, then a standard right heart 

catheterization is performed with oxygen saturation measurements to assess for intracardiac 

left-to-right shunting. Patients then perform a maximum, incremental, upright exercise on a 

cycle ergometer as ventilation and pulmonary gas exchange are continuously measured. 

Hemodynamics, including right atrial pressure (RAP), mean pulmonary artery pressure (mPAP), 

and mean arterial pressure (MAP) are continuously recorded and averaged throughout the 

respiratory cycle.28 Pulmonary arterial wedge pressure (PAWP), and arterial and mixed-venous 

blood gases and pH are measured every minute. RAP and PAWP are measured as the mean of 

the “a” wave. Cardiac output (Qc) is calculated using the direct Fick principle. Predicted peak 

values for Qc assume a normal hemoglobin concentration of 14 g/dL, arterial saturation of 

100%, and peak mixed venous oxygen saturation of 25%. To correct for anemia, the peak 

arterial-venous oxygen content difference should approximate the hemoglobin concentration.29
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After eliminating pulmonary mechanical limitations to exercise, the iCPET can differentiate 

central cardiac and peripheral limitations to acute exercise. Central cardiac limitations are due 

to left heart disease, right heart disease/pulmonary vascular disease, or inadequate cardiac 

preload, with age-related upper limits of normal defined in the upright position during cycle 

ergometry versus using flow or cardiac output-corrected pressure slopes, i.e. mPAP/Qc or 

PAWP/Qc slopes.30-32 Peripheral limitations, characterized by impaired systemic oxygen 

extraction, may be due to mitochondrial myopathy or microcirculatory left-to-right shunts 

(Figure 2). 

 

Inadequate Biventricular Preload 

The normal central exercise response consists of an increase in Qc and stroke volume to 

support the increased demand of skeletal muscle metabolism. Qc rises as a function of both 

mechanical mechanisms, i.e., skeletal-muscle and respiratory pumps, and neural mechanisms 

from parasympathetic withdrawal and sympathetic activation. In response, biventricular filling 

pressures normally increase from splanchnic vasoconstriction and peripheral venoconstriction, 

resulting in increased blood volume in the central circulation to support the increase in Qc and 

stroke volume.33 

 

Using iCPET, systemic vascular dysregulation appears to be similar in ME/CFS and PASC. In a 

heterogeneous population referred for iCPET investigation of unexplained exertional 

intolerance, low biventricular filling pressures, i.e. “preload failure,” explains depressed aerobic 
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capacity in approximately 20% of patients.34 In studies enriched with PASC8 and ME/CFS, 

preload failure appears to be ubiquitous.7  

 

Small fiber neuropathy’s (SFN) prevalence appears to be high in PASC and ME/CFS. In one small 

study, SFN was observed in nearly 90% of patients with PASC.35 One-third of patients with 

ME/CFS is definitively diagnosed with SFN by PGP9.5-immunolabeled lower-leg epidermal 

biopsy,7 a prevalence similar to that observed in fibromyalgia and postural orthostatic 

tachycardia syndrome (POTS).36 The prevalence described in ME/CFS may be underestimated 

due to the use of distal skin biopsies, which may not capture non-length dependent SFN and is 

age-dependent.37 Small fibers regulate microvascular tone through sympathetic and 

parasympathetic cholinergic synapses on perivascular myocytes.38 SFN and distal axonopathy 

can reduce venoconstriction, as seen with abnormal lower extremity venous pooling upon 

standing and low norepinephrine release after sympathetic nervous system stimulation in 

POTS.39  

 

Impaired Systemic Oxygen Extraction 

Normally, during intense exercise, sympathetic tone is elevated but “endogenous 

sympatholysis” due to local vasodilatory substances such as nitric oxide, adenosine, histamine, 

and prostacyclin decreases systemic vascular resistance and allows for preferential perfusion of 

the exercising muscle. Acid changes in the muscle capillary right shift the oxygen-hemoglobin 

dissociation curve and facilitates oxygen offloading to the muscle capillary.40  
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A high-flow state, suggested by an elevated Qc/VO2 slope throughout incremental exercise and 

elevated mixed venous oxygen saturation at peak exercise has been observed in both ME/CFS 

and PASC.7,8 Systemic microcirculatory dysfunction may explain this through peripheral left-to-

right shunts. Left-to-right shunts may be explained by dysautonomia, which include distal or 

proximal small fiber neuropathy or a co-existing ganglionopathy, sometimes associated with 

autoantibodies to the acetylcholine receptor.41 Skin biopsies of patients with small fiber 

neuropathy and fibromyalgia reveal dysregulated arteriovenous blood flow due to abnormal 

innervation of arteriovenous shunts, enabling oxygenated blood to bypass capillary beds and 

return unextracted to the venous circulation.42 Recent studies have suggested red cell 

deformability and endothelial dysfunction may compromise microcirculatory oxygen delivery 

during exercise.43,44  

 

Mitochondrial myopathy has been implicated in both ME/CFS45 and PASC46 as an explanation of 

exertional intolerance and can also present with impaired systemic oxygen extraction during 

iCPET. While Qc/VO2 slopes are elevated in both peripheral left-to-right shunts and 

mitochondrial dysfunction,47 the latter’s normal peak exercise Qc can help differentiate the two 

(Table 1).  

 

Dyspnea on Exertion 

Dyspnea on exertion generally results from ventilatory demand that exceeds capacity.48 In 

ME/CFS and PASC without intrinsic lung disease, pulmonary mechanics are not limiting. As 

noted above, niCPET suggests an association between breathlessness and inefficient 
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ventilation, i.e., elevated VE/VCO2, which by the alveolar ventilation equation is due to 

hyperventilation and/or increased physiological dead space/tidal volume (VD/VT). The iCPET 

allows direct measurements of both, with radial arterial blood gases allowing minute-to-minute 

assessment of acid-base status and mixed expired CO2 from the metabolic cart, with calculation 

of VD/VT through the Bohr equation. 

 

In patients with PASC and ME/CFS without intrinsic cardiopulmonary disease, ventilatory 

inefficiency and an erratic breathing pattern49 are frequently observed and associated with 

dyspnea. Interestingly, the abberant increase in VE/VCO2 is entirely due to hyperventilation and 

not due to the failure of the VD/VT to fall normally.8,50 This is in contradistinction to heart 

failure51 and PAH,52 where ventilatory inefficiency is driven by both elevated VD/VT and 

hyperventilation. In patients with heart failure, skeletal muscle group III-IV afferents play an 

important role in the exaggerated hyper-ventilatory response seen during exercise.51 These 

metaboreceptors detect by-products of muscle metabolism and stimulate group III-IV afferents 

of the spinal cord to the medullary respiratory centers to stimulate ventilation52. It is possible 

that in PASC and ME/CFS, similar to heart failure patients, an exaggerated skeletal muscle 

metaboreflex drives hyperventilation. This heightened ventilatory response is associated with 

exertional dyspnea. Respiratory alkalemia causes a leftward shift of oxygen (O2) dissociation 

curve, increasing hemoglobin-oxygen affinity, and inhibiting systemic capillary O2 offloading, 

contributing to the reduction in peak exercise VO2.40,50  

 

Deconditioning 
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Deconditioning has been implicated as an explanation for exertional intolerance in ME/CFS and 

PASC.5,6 Invasive CPET offers objective evidence arguing against simple deconditioning as an 

explanation for these symptoms. Low peak exercise Qc and higher intracardiac filling pressures 

are observed in detrained individuals due to cardiac atrophy and decreased ventricular 

compliance,53,54 diametrically opposed to the previously discussed preload failure 

hemodynamic phenotype. In a similar fashion, peripheral oxygen extraction is little affected by 

deconditioning.53 

 

Hypovolemia has been offered as an explanation for low intracardiac filling pressures in POTS, 

ME/CFS, and PASC . The lack of NPO status for iCPET, absence of diuretic and venodilator drug, 

and increased peak exercise RAP, Qc and VO2 in a recent randomized, placebo-controlled iCPET 

study of pyridostigmine in ME/CFS suggest neurovascular dysregulation underlies preload 

failure, rather than hypovolemia.7,8,55 
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Special Consideration in Pediatrics 

Children with SARS-Cov2 often have asymptomatic or mild disease. However, a minority of 

pediatric patients have a more severe course either acutely manifesting as ARDS and/or 

myocarditis or 4-6 weeks later as a post inflammatory disorder known as multi-system 

inflammatory syndrome in children (MIS-C). For those with MIS-C, illness is severe, with 

approximately 80% of patients requiring intensive care, approximately 50% showing features of 

LV systolic dysfunction and myocarditis, 10-20% developing acute coronary artery aneurysms, 

20% with EKG abnormalities/arrythmias, and 4% requiring ECMO.56,57 

 

While many surviving patients return to their baseline health within 8 weeks of their illness, a 

proportion of children experience chronic health impairments.58  Meta-analyses of 

observational studies including > 80,000 children report long COVID symptoms in 25% of 

children after SARS-CoV2 infection.59 Prominent symptoms include exercise intolerance, 

shortness of breath, and orthostatic intolerance. Such impairments may be secondary to the 

severity of illness, post-ICU syndrome, critical illness myopathy, residual cardiac dysfunction, or 

deconditioning.  However, these symptoms also occur in outpatients with mild SARS-CoV2 

illness which would be more suggestive of a pathophysiology similar to ME/CFS.  Fatigue and 
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post-exertional malaise are among the most common symptoms reported in children with long 

COVID.  A recent prospective, multicenter study identified persistent symptoms and activity 

intolerance at 2-4 months after hospitalization for 26.9%% of children hospitalized with acute 

COVID and 30% of those hospitalized with MIS-C.60 Meta-analysis also showed these symptoms 

were among the most common reported in children who were not hospitalized.59 PASC 

symptoms in children may be independent of the severity of the initial infection and occur 

despite resolution of laboratory and echocardiographic abnormalities.60,61  

 

There are limited data regarding formal exercise testing in patients with PASC or MIS-C. In a 

group of 40 children followed after hospitalization for MIS-C, 45% had 6-minute walk test 

performances below the third percentile for their age and sex at 6 months post discharge.62 In 

addition, abnormal cardiorespiratory responses during exercise were demonstrated in a small 

number of patients after hospitalization for MIS-C. In this sample all patients had lower VO2peak, 

impaired oxidative metabolism (lower VO2VAT and OUES), and ventilatory inefficiency (higher 

VE/VCO2) compared with normal values for the cohort.63  

 

While possibly connected to residual cardiac disease, both impaired 6-minute walk and low 

VO2peak occurred in some patients who had normal inflammatory markers and normal 

ventricular systolic function on echocardiogram. It is unclear whether the persistent symptoms 

of PASC in children may have some contribution from deconditioning as suggested from these 

healthy control studies or are entirely from the pathobiology of the illness itself.64 
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Shortness of breath has also been reported as a frequent symptom in children with long 

COVID. A single center study comparing pulmonary function testing in seventy-three children 

and adolescents after SARS-CoV-2 seroconversion, demonstrated lack of impairment except in 

those with severe infection and no difference in follow up pulmonary function testing 

compared with a group of healthy controls.65  The mechanisms underlying the discrepancy 

between subjective persistent respiratory complaints and normal pulmonary function in 

children with long COVID are unclear but this finding has similarity to what has been reported in 

ME/CFS. 

 

Orthostatic intolerance, described in most patients with ME/CSF, is a common finding in 

adolescents with PASC with reported orthostatic symptoms as well as descriptions of 

palpitations, dizziness and lightheadedness.58,61 In some instances post COVID infection, 

adolescents may be diagnosed with postural tachycardia syndrome (POTS) in the setting of 

excessive heart rate increase without hypotension while upright or other forms of 

dysautonomia, reinforcing the importance of orthostatic testing in the evaluation of PASC 

symptoms in young patients.58 

 

In addition to obtaining a careful history of SARS-CoV-2 illness, complications, and 

comorbidities, testing in children and adolescents with PASC (severe illness as well as mild) 

should include laboratory analysis, echocardiogram +/- cardiac MRI, PFTs, 6-minute walk test, 

CPET and orthostatic testing. Ongoing large prospective multicenter trials such as the NIH 

sponsored Long-terM OUtcomes after the Multisystem Inflammatory Syndrome in Children 
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(MUSIC) study and the NIH RECOVER program, studying post-acute sequelae of COVID-19, will 

be crucial to our understanding of this disease, allowing for more definitive clinical guidelines 

for management and treatment of children with PASC. 

 

 

KNOWLEDGE GAPS AND FUTURE DIRECTIONS 

Given the significant global burden of ME/CFS and the suspected societal costs of PASC, further 

research into underlying mechanisms and treatment is needed. Invasive CPET offers insights 

into underlying pathophysiology of ME/CFS and PASC that cannot be derived from testing of 

the patient in the resting state or noninvasively. Future directions using noninvasive CPET in 

conjunction with plasma -omic signatures may be useful. Metabolomics reveal exercise 

perturbations in lipid-related and energy-related pathways, with commonality observed with 

glutamate metabolism.22 Metabolic profiles of PASC show elevated ferritin, D-dimer, 

erythrocyte sedimentation rate, and C-reactive protein, suggestive of a chronic inflammatory 

state.66 Targeting these pathways may offer benefit related to symptom burden. 

 

There are no FDA approved treatments for ME/CFS and PASC.  Non-pharmacologic therapies 

can be offered, though data are based on treating patients with POTS. These include increased 

dietary salt and fluid intake, activity modification such as leg crossing and squatting, and the 

use of compression stockings and abdominal binders.67 While graded exercise has been 

recommended for POTS, PEM makes exercise recommendations difficult in ME/CFS and PASC, 

supporting the role of CPET guided exercise prescriptions in rehabilitation efforts. Prior studies 
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have evaluated cognitive behavioral therapy, graded exercise,68 intravenous immunoglobulin,69 

and B-cell depletion.70 While robust evidence exists for treating autoantibody mediated disease 

such as myasthenia gravis, limited data support the use of immunosuppression in autoantibody 

associated ME/CFS.71 Increasing recognition of mitochondrial dysfunction underlying PASC has 

led to clinical trials evaluating compounds to improve muscle metabolism (NCT05152849). 

However, limited efficacy and data exist for the use of mitochondrial supplements such as 

ubiquinol, alpha-lipoic acid, L-carnitine, oxaloacetate, and B-vitamins, though little harm results 

from their use.72,73 Finally, a double-blind, randomized, placebo-controlled trial of a single dose 

of pyridostigmine in patients with ME/CFS undergoing iCPET demonstrated improvement in 

VO2 by increasing Qc and right ventricular filling pressures.55 Long-term, placebo-controlled 

studies are needed to assess for improvements in PEM and exercise tolerance. 
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CONCLUSION 

PASC and ME/CFS overlap in both symptom burden and exercise derangements. Noninvasive 

CPET is useful in characterizing aerobic capacity and evaluating ventilatory inefficiency, the 

latter caused by hyperventilation. Two-day noninvasive CPET protocols may provide a 

diagnostic tool by showing a decrement in peak VO2 on day two, potentially due to PEM. 

Neurovascular dysregulation observed with invasive CPET further explains exercise intolerance 

in PASC and ME/CFS through impaired cardiac preload and peripheral oxygen extraction, 

associated with autonomic dysfunction, small fiber neuropathy, ganglionopathy, and 

mitochondrial dysfunction. Future studies targeting these pathways are needed to reduce the 

substantial global burden of PASC and ME/CFS. 
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Figure 1 – Invasive Cardiopulmonary Exercise Test 
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Figure 2 – Evaluation of Undifferentiated Exertional Intolerance 

 

 

 

CaO2: Arterial oxygen content. CvO2: Venous oxygen content. Hb: Hemoglobin. mPAP: Mean 
pulmonary artery pressure. PAWP: Pulmonary artery wedge pressure. PVR: Pulmonary vascular 
resistance. MVV: Maximum voluntary ventilation. RAP: Right atrial pressure. Qc: Cardiac output. 
VE: Minute ventilation. VO2: Oxygen uptake 

aBreathing Reserve Index1
 

bPeripheral Limitation2
 

cAge defined upper limits of normal3 

dThe mPAP/Qc slope is age-dependent whereas the TPG/Qc slope is age-independent.4
 

dPreload failure5
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